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Highlights PreSTU

Pre-training recipe with OCR-aware objectives to learn two essential STU capabillities,

= Propose PreSTU, a simple and effective pre-training recipe "PAR 4 353 333 287 HDCP”

with OCR-aware objectives for scene-text understanding . Recognizing text in a visual scene ii. Connecting the text to its context in the scene T

* PreSTU encourages models to recognize text from an image Objectives ViT+T5
and connect what is recognized to the rest of the image content | _ SplitOCR: Given (image, , first some OCR tokens), generate the rest of OCR tokens in the image

* PreSTU leads to improved STU on twelve diverse downstream / \

* By predicting OCR tokens, models learn to recognize scene text
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VQA and image captioning tasks o | | o
* By giving OCR tokens and image as input, learn to connect scene text to its visual context
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Scene-text understanding (STU)

Understand the role of text in the context of a visual scene
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: * VQA: Given (image, prompt, question, OCR tokens), generate an answer
1 ® CAP: Given (image, prompt, OCR tokens), generate a scene-text caption
: * VQA/CAP further learn the connection & ease the knowledge transfer to downstream tasks with the same input/output format
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= SplitOCR > OCR: SplitOCR balances ! SplitOCR was used as one
two STU capabilities while OCR focuses : of pre-training objectives for
too much on recognizing scene text | PaLl-X, SOTA model on

STU Challenges
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» Models should learn two capabilities to solve STU tasks: :
I. Recognizing text in a visual scene ,
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